
A Model Coupling
Toolkit Primer

J. Walter Larson
Mathematics and Computer Science Division

Argonne National Laboratory

Presented at the Sixth DOE ACTS Collection Workshop
Berkeley, CA

August 23-36, 2005

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Overview
•What is MCT?
•Multiphysics Models
•The Parallel Coupling
Problem

•How MCT Enables Solutions
to the Parallel Coupling
Problem

•The MCT Programming
Model

•An Illustrative Example
•Conclusions/Future

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

The MCT Infomercial...

Man: What are grits?
Waitress: They’re fifty cents
Man: But what are they?
Waitress: They’re extra.
-from New Jersey Turnpike, USA I-IV

by Laurie Anderson

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

What is MCT?

• MCT := Model Coupling Toolkit

• A software toolkit for coupling message-
passing-parallel models into a single parallel
coupled model

• An extension to MPI (yes, we are MPI-
specific--for now)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Who Wrote MCT?

• According to Forrest Hoffman (ORNL) in a
Linux Magazine column: “...fearless
programmers from Argonne National
Laboratory”

• J. Larson and R. Jacob--lead developers, along
with E. Ong (UW Madison), J. Guo (NASA
GSFC), J. Mogill and C. Corey (Cray), and R.
Loy (ANL)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Why Was It Built?

• We needed it to build a fully message-passing
parallel coupled climate model, the
Community Climate System Model (CCSM)

• We felt this was an emerging problem of
central importance in computational science

• Somebody was willing to pay for it

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Who Paid for It?
• Department of Energy Office of Science

• Specifically the DOE Office of Biological and
Environmental Research

• Through the Climate Change Prediction Program
(CCPP), which is part of DOE’s Scientific Discovery
through Advanced Computing SciDAC program

• Funded 2000-present to support development of
CCSM, which DOE uses to perform USA’s climate
change assessment studies

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

How Can I Get It?
• Open source--MCT is available for free and

freely available from the MCT Web site

http://www.mcs.anl.gov/mct

• MCT is highly portable and will build and run
on most unix systems with most compilers.
This includes most commodity Linux clusters
and also vector supercomputers such as the
Cray X-1, NEC SX- series (including the
Earth Simulator), and Fujitsu VPP.

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MCT 2.1.0 Distribution
• Build system based on autoconf

• Coded in Fortran90, approximately 51 kLOC

• Distribution contains

• mpeu -- Message Passing Environment Utilities

• mct -- the toolkit itself

• examples

• simple -- single-source-file codes containing two components
with sequential and concurrent component scheduling

• climate_concur1 -- two-component example using concurrent
scheduling

• climate-sequen1 -- two-component example using sequential
scheduling

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Two Major MCT Applications
• Community Climate System Model CCSM 3.0

• Flux coupler CPL6 -- Parallel “glue” to exchange data between parallel
atmosphere, ocean, sea ice, and land models

• Implemented as a toolkit that extends MCT

• Used in ~11,000 model years’ production runs and runs submitted to
latest UN-sponsored Intergovernmental Panel on Climate Change
assessment

• Weather Research and Forecasting (WRF) Model

• Parallel Coupling API

• Implemented as a parallel I/O mechanism

• Available separately from WRF on MCT Web site

• Has been run successfully in a computational grid environment

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Q. What’s in it for me?
A. The kind of modeling
we really want to do...

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

...Is Multiphysics and/or
Multiscale in Nature...

e.g., a hurricane

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

NWP for a Hurricane
(if done all at once)

Global Atmosphere Regional Atmosphere

Regional OceanGlobal Ocean

Atmosphere-Surface Fluxes

Lateral Boundary Conditions

Observations / Analysis

Data Assimilation

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Complexity Barriers
Traditional approach: Model individual subsystems of a greater whole in
isolation

• Idealize interactions with outside world using prescribed data or
simplified physics

• Why? Three complexity barriers to overcome:

• Knowledge, a consequence of specialization

• overcome through interdisciplinary teams

• Computational, i.e., getting all the math done

• overcome by faster processors, better algorithms, and parallel
computing

• Software: build system, language barriers, interactions between
physics packages

Message-passing parallelism creates a new software complexity barrier: the
parallel coupling problem (PCP)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Parallel Coupling Problem
Given: N mutually interacting models (C1,C2,...CN),
each of which may employ message-passing parallelism

Goal: Build an efficient parallel coupled model

Aspects of the problem:

• Architecture

• Parallel data processing

• Environment--important, beyond scope of current
discussion

• Language barriers

• Build issues

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Architectural Aspects
Two sources that shape parallel coupled models:

• Science of the system under study:
• Connectivity--who talks to whom?
• Domain overlap--lower-dimensional vs. colocation
• Timescale separation/interaction & domain overlap
• Coupling event scheduling (e.g., periodic?)
• Tightness

• Implementation choices:
• Resource allocation
• Scheduling of model execution
• Number of executable images
• Mechanism

Dynamic Resource Allocation

Strategy
Intra-

component
Inter-

component Global

Level 0
(Static) Static Static Static

Level 1 Dynamic Static Static

Level 2 Dynamic Dynamic Static

Level 3 Dynamic Dynamic Dynamic

Requirements Stemming
from Dynamic Load Balance

Cumulative growth in requirements as constraints on
scheduling and resource allocation are loosened:
Level 0: No additional requirements
Level 1: Fast handshaking between components to cope
with changing decompositions between coupling events
Level 2: Ability of framework or coupling mechanism to
checkpoint models and re-instantiate/restart them on
their new processor pools
Level 3: Ability of underlying communications mechanism
to cope with dynamically varying global resource pool
(e.g., dynamic MPI_COMM_WORLD)

Tightness vs. Looseness
A logical starting point is the cost break-down structure
for the coupled model. Define the load matrix L as

The tightness of an individual model’s coupling to the
rest of the system is

The overall tightness of a coupled system is the ratio of
its coupling costs to total costs

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Parallel Data Processing
• Description of data to be exchanged during coupling

• Physical fields/variables

• Mesh or representation associated with the data

• Domain decomposition

• Transfer of data--a.k.a. the MxN problem

• Transformation of data

• Intermesh interpolation/transformation between
representations

• Time transformation

• Diagnostic/variable transformations

• Merging of data from multiple sources

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MCT is a Collection of Classes...

...where “class” is used following Decyk et al. (1996,1997)

Data Transformation

Data Description

Data TransferKEY

AttrVect GlobalSegMap

GeneralGridAccumulator SparseMatrix

SparseMatrixPlus

MCTWorld

Router

Rearranger

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MCT’s Universe of Discourse
• Support coupling of MPI-based MPP models

• Data transfer using a peer commmunication
model

• Description of physical meshes and associated field data
through linearization

• Data transfer and transformation are viewed as multi-
field, pointwise operations

• We leave numerous, high-level operations to the user’s
discretion (e.g., choice of linearization and interpolation
schemes), while concentrating on automation of
complex (but important!) low-level operations

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Coupling as Peer
Communication

• MCT’s organizing principle is the component model, or
component (not same as CORBA, CCA, ESMF,
JavaBeans)

• An MCT component is merely a model that is part of
the larger system and participates in coupling

• In MCT, components interact directly as peers

• The user codes these connections into the model
source

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Linearization of Multi-
Dimensional Space

• Linearization (first used in MxN schemes by UMD’s
METACHAOS) is the mapping from an n-tuple index
space to a single global location index

• This approach allows for a single representation of
grids/arrays of aribtrary dimension

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

A Simple Linearization Example

2 3 4 5

6 7 8 9 10

1

11 12 13 14 15

16 2017 18 19
PROC 1

PROC O

• 2D Cartesian mesh

• 2 Processors

• Numbering varies fastest in x-direction

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Pointwise Operations
• FACT: Most coupling between components

involves multivariate exchanges (e.g., ~10-12
fields between atmosphere and ocean in a
climate model)

• Consolidating operations on data to be
exchanged can result in performance boosts
due to better cache re-use and lowered MPI
latency charges

• In MCT, implementation choices (primarily
storage order) have been made to exploit this
situation

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Automating (Most of) the
Tough Stuff

• We leave coupled model architecture decisions to the user

• We aim to be minimally invasive--user still owns main(), still calls
MPI_Init(), et cetera...

• The user decides how and when to couple

• The user must describe application grids and decompositions using
MCT’s GeneralGrid and GlobalSegMap classes

• The user must pack coupling data in AttrVect form

• MCT’s library routines do the heavy lifting

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Description:
Domain Decomposition

• Embodied in the GlobalSegMap class

• Linearization creates a single unique index for each
location, and runs of consecutive indices--or segments--are
stored by start index, segment length, and processor ID on
which it resides (on the component’s communicator)

• Capable of supporting arbitrary decompositions and
haloed decompositions

• Support for global-to-local and local-to-global index
translation

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Description:
Physical Meshes

• Embodied in the GeneralGrid class

• Linearization implies this class stores real and integer
attributes of individual mesh points

• Coordinates, length, cross-sectional area, and volume
elements, integer and real masks, grid indices

• Able to describe meshes of arbitrary dimensionality and
also unstructured meshes

• Method support for sorting points in lexicographic order
by coordinates and/or other attributes

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Description: Field Data
• Embodied in MCT AttrVect class, which is similar to

Trilinos multi-vector

• Allows storage of both integer and real attributes

• In implementation, major index is field index, keeping in
line with pointwise approach

• Attributes are accessed via use of string tokens

• Lists of attributes are set at initialization, which allows
run-time binding of what fields are stored

• Numerous query and manipulation methods including
importing and exporting attributes and MergeSort keyed
by attributes

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Transfer: Registration

• Singleton class MCTWorld holds a lightweight
component registry

• Components are registered with a component ID

• MCTWorld contains a rank translation table that
allows a component to message another remote
component by using information from its local
domain decomposition descriptor (i.e., we do not
construct nor use intercommunicators)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Transfer:
Communications Scheduling

• Scheduling for one-way parallel data transfers
are handled by the Router class

• Scheduling for two-way parallel data transfers
and parallel data redistributions are handled
by the Rearranger class, which comprises
two Routers

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Transfer: Execution
• MxN Communications between components are carried out by library

routines MCT_Send() and MCT_Recv(), both of which have (overall)
blocking and non-blocking versions

• Overall blocking--Prevents concurrently scheduled components from
outrunning each other

• Overall nonblocking--allows for same communications approach to
be used for sequentially scheduled components

• N.B.: non-blocking MPI operations are used for the individual point-
to-point messages within the MxN transfer operation

• MxM redistributions are handled by the MCT library routine
Rearrange()

• Contains logic to prevent self-messaging (does a copy instead)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Transformation:
Intermesh Interpolation

• MCT’s linearization-based worldview casts interpolation as a linear transform and thus
implementable as a matrix-vector multiply

• In practice, these interpolation matrices are quite sparse

• MCT’s SparseMatrix class provides storage for nonzero matrix elements in COO
format

• Method support includes query methods, computation of sparsity, sorting methods to
aid matrix decomposition and to boost performance

• Library function performs multiplication y = Mx, where x and y are of AttrVect type,
and this function performs automatic token-based matching of attributes

• Main implementation targets commodity cache-based processor platforms, and MCT’s
pointwise operation view makes good re-use of cache

• Modifications for vector platforms also included

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

3 Ways to Parallelize y = Mx
Based on x

(y is shorter than x)
Based on y

(x is shorter than y)
Other

(e.g. Based on M)
1) Use local data to form
(embarassingly parallel)
partial sums y’

y’ = Mx

2) Communicate to
reduce partial sums y’ to
final product y

1) Gather pre-image of y
x’ from x

2) Compute the product
y = Mx’

(embarassingly parallel)

1) Gather pre-image of y
x’ from x

2) Compute the partial
sums

y’ = Mx’
(embarassingly parallel)

3) Communicate to
reduce partial sums y’ to
final product y

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MCT’s Parallel Linear
Transformation

• MCT provides the SparseMatrixPlus class, which
encapsulates everything needed for a sparse linear transform

• This class includes Rearrangers to schedule communications
and a SparseMatrix to store matrix elements

• Library routine to compute y = Mx in parallel, again where
x and y are of AttrVect type, and automatic token-based
matching of attributes is performed

• Support for both commodity and vector processors

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Data Transformation:
Time Accumulation

target

t = tc

source

target

t = tc

source

target

t = tc

source

target

t = tc

source

target
(e)

c

source
(a)

(b)

(c)

(d)

t = t

•Time evolution of multi-component systems can
involve data exchanges of instantaneous or/or
integrated data

•For instantaneous exchanges, use of one or more
AttrVects is sufficient

•For integrated data exchanges, MCT offers
accumulation registers in the form of the
Accumulator class, and the accumulate() library
routine

•The Accumulator provides registers for time
integration and averaging of data, and keeps track of
progress over an accumulation cycle

•The accumulate() library routine works with
AttrVect and Accumulator arguments, and
automatically cross-indexes and accumulates
attributes with matching tokens

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Other Services--Spatial
Integration and Averaging

• MCT provides routines for computing spatial integrals and
averages

• These routines are included to diagnose (and if wished, even
enforce) conservation of integrals in the interpolation process

• Library routines operate on AttrVect objects

• Spatial weight elements and masks can be provided either in
GeneralGrid or array form

• Paired integral/average routines to compute integrals
simultaneously on source and target grids to minimize global
sum latency costs

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Other Services--Merging of
Data from Multiple Sources
• Often one must combine outputs from multiple components

for use as input for another component (e.g., fluxes/states
from ocean, land, and sea-ice for use by atmosphere)

• MCT provides a Merge facility, which is a set of routines to
combine multiple AttrVect data streams into a single AttrVect
result

• Real and Integer masks for the merge can be supplied either in
GeneralGrid or array form

• Automatic token-based attribute matching

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MCT Programming Model
Based on Fortran90, but we are
beginning to support other languages.

• Use modules for access to MCT
classes and methods

• Declare variables of MCT datatypes

• Invoke MCT library routines to
accomplish parallel coupling
operations

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

A Simple Example,
Where Simple is a

Relative Term

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

A (Sort of) Simple Example
• Three Components

• Coupler component handles
data transformation

• Interpolation

• Time averaging

• Components communicate
with coupler

• Atmosphere hourly

• Ocean daily

Atmosphere

Coupler

Ocean

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Further Details and
Simplifying Assumptions

• Atmosphere and Ocean employ simple 2D latitude/longitude grids at surface

• Atmosphere: aLats x aLons = NatmPts

• Ocean: oLats x oLons = NocnPts

• Coupler uses the same decomposition for Atmosphere for all of its
processing

• Coupler uses the same decomposition for the Ocean for all of its processing

• Atmosphere outputs same fields that coupler receives as input and vice-versa

• Ocean outputs same fields that coupler receives as input and vice-versa

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

 program ATMorOCN
.
.
.
 use m_MCTWorld
 use m_GeneralGrid
 use m_GlobalSegMap
 use m_AttrVect
 use m_Router
 use m_Transfer
 use m_Accumulator
.
 implicit none
.

Module Use (ATM, OCN)
Component Registry

Domain Decomposition
Descriptor

Exchanged Field Data Storage

MxN Comms Scheduler

MCT MxN Transfer Routines

Physical Mesh Descriptor

Time Integration Registers
(Ocean Only)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

 program Coupler
.
.
.
 use m_MCTWorld
 use m_GeneralGrid
 use m_GlobalSegMap
 use m_AttrVect
 use m_Router
 use m_Transfer
 use m_SparseMatrix
 use m_SparseMatrixPlus
 use m_MatAttrVectMul
 use m_Accumulator
.
.
 implicit none
.

Module Use (Coupler)
Component Registry

Physical Mesh Descriptor

Domain Decomposition Descriptor

Exchanged Field Data Storage

MxN Comms Scheduler

MCT MxN Transfer Routines

Interpolation Weight Storage

Parallel Interpolation Matrix Object

Parallel Matrix-Attribute Vector Multiply

Time Averaging/Integration Registers

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Declaration (Atmosphere)

! Domain decomposition descriptor for Atmosphere
 Type(GlobalSegMap) :: AtmDecomp
! MCT description of Atmosphere grid
 Type(GeneralGrid) :: AtmMesh
! MCT storage for outgoing/incoming field data
 Type(AttrVect) :: Atm2Cpl, Cpl2Atm
! MCT Comms scheduler for MxN to/from Coupler
 Type(Router) :: AtmCplSchedule

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Declaration (Ocean)

! Domain decomposition descriptor for Ocean
 Type(GlobalSegMap) :: OcnDecomp
! MCT description of Ocean grid
 Type(GeneralGrid) :: OcnMesh
! MCT storage for incoming/outgoing field data
 Type(AttrVect) :: OcnFromCpl, OcnToCplInst
! MCT Comms scheduler for MxN to/from Coupler
 Type(Router) :: OcnCplSchedule
! Time Averaging/Integration registers for output
 Type(Accumulator) :: OcnToCplAccum

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Declaration (Coupler)
! Domain decomposition descriptors for Atm/Ocn
 Type(GlobalSegMap) :: AtmCplDecomp, OcnCplDecomp
! MCT description of Atmosphere and Ocean grids
 Type(GeneralGrid) :: AtmMesh, OcnMesh
! MCT storage for field data to be processed
 Type(AttrVect) :: CplToAtm, CplToOcn, CplFromOcn, CplFromAtm
! MCT comms scheduler for MxN to/from Coupler
 Type(Router) :: CplAtmSchedule, CplOcnSchedule
! Time averaging/integration registers for output
 Type(Accumulator) :: AtmToOcn
! Storage for interpolation matrix elements
 Type(SparseMatrix) :: A2OMatElements, O2AMatElements
! Parallel interpolation matrix-AttrVect multiply objects
 Type(SparseMatrixPlus) :: A2OparXform, O2AparXform

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Invocation: MCT Initialization
• Purely concurrent component scheduling--each component on

its own pool of processors

• Shown for Atmosphere, but is representative

• MCT component IDs: Atmosphere=1, Ocean=2, Coupler=3

• Works for either single or multiple executable application
...
! MPI initialization
 call MPI_INIT(MPI_COMM_WORLD, ierr)
! Split MPI_COMM_WORLD to get atmosphere communicator AtmComm
...
 compID = 1
! Initialize MCT World Registry
 call MCTWorld_init(1,MPI_COMM_WORLD, AtmComm, compID)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Invocation: MCT Initialization
• Purely sequential component scheduling--each component on its

own communicator, which is a copy of MPI_COMM_WORLD

• MCT component IDs: Atmosphere=1, Ocean=2, Coupler=3

• Shown for driver that calls Atmosphere, Ocean, and Coupler
! MPI initialization
 call MPI_INIT(MPI_COMM_WORLD, ierr)
! Copy MPI_COMM_WORLD to get atmosphere communicator AtmComm,
! ocean communicator OcnComm, and coupler communicator CplComm
...
! Set component IDs
 compIDs(1) = 1 ! Atmosphere
 compIDs(2) = 2 ! Ocean
 compIDs(3) = 3 ! Coupler
! Initialize MCT World Registry
 call MCTWorld_init(3,MPI_COMM_WORLD, AtmComm, compIDs)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

GlobalSegMap Initialization

! Initialize Atmosphere GlobalSegMap
 call GlobalSegMap_init(AtmDecomp, starts, lengths, root, &
 AtmComm, AtmCompID)

• Shown for Atmosphere, but representative

• Arguments

• starts(:) - Integer array of starting indices (global) for each segment

• lengths(:) - Integer array of segment lengths

• root - Integer, rank of root process on component’s local
communicator AtmComm

• AtmCompID - Integer, MCT component ID number

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

AttrVect Initialization
• Shown for Ocean output to Coupler, but representative

• Attributes (second and third string arguments, respectively):

• Integer: Latitude, Longitude, and Linearized indices (all global)

• Real: Temperature, east component of current, north component of
current, EW gradient of surface height, NS gradient of surface height, and
heat flux

• nOcnLocal - Number of points on this processor’s chunk of ocean grid

• N.B.: This call constructs the AttrVect; data is filled in separately

! Initialize Ocean Output AttrVect Ocn2CplInst
 call AttrVect_init(Ocn2CplInst, ‘LatInd:LonInd:LinInd’, &
 ‘T:u:v:S:dhdx:dhdy:Q’, nOcnLocal)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Router Initialization for
Atmosphere/Coupler MxN

! Initialize Coupler-to-Atmosphere Router
 call Router_init(AtmCompID, AtmCplDecomp, CplComm, &
 CplAtmSchedule)

! Initialize Atmosphere-to-Coupler Router
 call Router_init(CplCompID, AtmDecomp, AtmComm, &
 AtmCplSchedule)

In the Atmosphere:

In the Coupler:

Router

Router

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

SparseMatrix Initialization

 call SparseMatrix_init(A2OMatElements, nrows, ncols, lsize)
 call SparseMatrix_importGlobalRowIndices(A2OMatElements, grows, lsize)
 call SparsMatrix_importGlobalColumnIndices(A2OMatElements, gcols, lsize)
 call SparseMatrix_importMatrixElements(A2OMatElements, weights, lsize)

• MCT does not currently generate interpolation weights on-line

• Instead, we rely on other tools to generate them off-line, or at start-up

• Suppose we have a sparse interpolation matrix M whose elements are specified in COO
format by three arrays:

• grows(:) - integer, global row indices

• gcols(:) - integer global column indices

• weights(:) - real matrix entries

• For this example, we are calling this routine only on the coupler’s root process; lsize is the
number of nonzero elements

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

SparseMatrixPlus Initialization

 call SparseMatrixPlus_init(A2OParXform, A20MatElements, &
 AtmCplDecomp, OcnCplDecomp, &
 MvMultDecompStrategy, CplRoot, &
 CplComm, CplCompID, Tag)

• Shown for Coupler’s Atmosphere-to-Ocean transformation

• Uses SparseMatrix object A2OMatElements created on previous slide

• MvMultDecompStrategy is the parallelization strategy choice, which is one of

• row-based

• column-based

• matrix-based (e.g., use graph partitioning for load balancing the multiply)

• N.B.: This call constructs and fills in the SparseMatrixPlus

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Accumulator Initialization

! Initialize Ocean Output Accumulator Ocn2CplAccum
 call Accumulator_init(Ocn2CplAccum, rList=‘T:u:v:S:dhdx:dhdy:Q’, &
 rAction=rActions, lsize=nOcnLocal, &
 num_steps=72, steps_done=0)

• Shown for Ocean output to Coupler, but representative

• Only real attributes are being accumulated

• rAction - integer array of processing action MCT_SUM (0, summation) or MCT_AVG (1,
average assuming uniform time weighting)

• For this example, rAction = (1 1 1 1 1 1 0)

• nOcnLocal - Number of points on this processor’s chunk of ocean grid

• num_steps - number of steps in an accumulation period (1 day with 20 minute ocean
timestep)

• steps_done - set to zero if we are beginning at the start of an accumulation period

• N.B.: This call constructs the Accumulator; data is filled in separately

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MxN Transfer ATM to CPL
(Blocking)
In the Atmosphere:

In the Coupler:

! Send Attributes in Atm2Cpl to Coupler
 call MCT_Send(Atm2Cpl, AtmCplSchedule, Tag)

! Receive Attributes in CplFromAtm from Atmosphere
 call MCT_Recv(CplFromAtm, CplAtmSchedule, Tag)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

MxN Transfer ATM to CPL
(Non-Blocking)

In the Atmosphere:

In the Coupler:

! Send Attributes in Atm2Cpl to Coupler
 call MCT_ISend(Atm2Cpl, AtmCplSchedule, Tag)
...
 call MCT_WaitSend(AtmCplSchedule)

! Receive Attributes in CplFromAtm from Atmosphere
 call MCT_IRecv(CplFromAtm, CplAtmSchedule, Tag)
...
 call MCT_WaitRecv(CplAtmSchedule)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Parallel Interpolation in the
Coupler (Atm to Ocn)

! Perform parallel sparse matrix-attribute vector multiply:
 call sMatAvMult(CplFromAtm, A2OParXform, CplToOcn)

• Message-passing parallel matrix-vector multiply to
interpolate Atmosphere real fields onto Ocean real
fields

• As usual in MCT, automatic token-based attribute
matching coordinates the calculation

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Accumulation in Ocean

! Accumulate instantaneous ocean data in AttrVect OcnToCplInst into
! the accumulator OcnToCplAccum
 call accumulate(OcnToCplInst, OcnToCplAccum)

• Time averaging of states and summation of fluxes
in the Ocean

• Performed every ocean timestep

• Accumulation period one model day, which
matches the coupling period for this component

• As usual in MCT, automatic token-based attribute
matching guides the calculation

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

OK, So You Hate Fortran
• Work has begun to export MCT’s programming model to

other languages

• Accomplished by leveraging CCA’s Babel language
interoperability tool

• SIDL description of a restricted version of the MCT API

• Bindings for this API generated automatically for both C++
and Python

• Download ftp://mcs.anl.gov/pub/acpi/MCT/babel.tar.gz

• Foundation code for pyMCT and pyCPL (U. Chicago)

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Conclusions
• MCT exists, is highly portable and robust

• MCT supports a linearization approach to coupling
that is universally applicable to mesh-based systems

• MCT services support numerous modes of operation
for coupled systems

• Purely sequential component scheduling

• Purely concurrent component scheduling (including
multiple executables and computational grids)

• Combinations thereof

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

Future Work
• Continue expanding the programming model to other languages

using Babel

• Address explicitly one-dimensional approach and craft more
convenient interfaces for multidimensional grids and arrays

• Speed up intercomponent handshaking to better support level
intracomponent dynamic load balance

• Modify registry to support level intercomponent dynamic load
balance (but somebody else can do the checkpointing)

• Include support for pure OpenMP and hybrid parallelism

• Move beyond linear transformations

• More sophisticated Merge facility

DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

FIN

